Since the publication of the bestselling first edition, many advances have been made in exploratory data analysis (EDA). Covering innovative approaches for dimensionality reduction, clustering, and visualization, Exploratory Data Analysis with MATLAB, Second Edition uses numerous examples and applications to show how the methods are used in practice. New to the Second Edition: Discussions of nonnegative matrix factorization, linear discriminant analysis, curvilinear component analysis, independent component analysis, and smoothing splines - An expanded set of methods for estimating the intrinsic dimensionality of a data set - Several clustering methods, including probabilistic latent semantic analysis and spectral-based clustering - Additional visualization methods, such as a rangefinder boxplot, scatterplots with marginal histograms, biplots, and a new method called Andrews’ images -Instructions on a free MATLAB GUI toolbox for EDA... Like its predecessor, this edition continues to focus on using EDA methods, rather than theoretical aspects. The MATLAB codes for the examples, EDA toolboxes, data sets, and color versions of all figures are available for download at http://pi-sigma.info.
Exploratory Data Analysis with MATLAB 2nd Edition
Wendy L. Martinez, Angel Martinez, Jeffrey Solka ... 536 pages - Publisher: CRC Press; 2nd edition (December, 2010) ... Language: English - ISBN-10: 1439812209 - ISBN-13: 978-1439812204
Since the publication of the bestselling first edition, many advances have been made in exploratory data analysis (EDA). Covering innovative approaches for dimensionality reduction, clustering, and visualization, Exploratory Data Analysis with MATLAB, Second Edition uses numerous examples and applications to show how the methods are used in practice. New to the Second Edition: Discussions of nonnegative matrix factorization, linear discriminant analysis, curvilinear component analysis, independent component analysis, and smoothing splines - An expanded set of methods for estimating the intrinsic dimensionality of a data set - Several clustering methods, including probabilistic latent semantic analysis and spectral-based clustering - Additional visualization methods, such as a rangefinder boxplot, scatterplots with marginal histograms, biplots, and a new method called Andrews’ images -Instructions on a free MATLAB GUI toolbox for EDA... Like its predecessor, this edition continues to focus on using EDA methods, rather than theoretical aspects. The MATLAB codes for the examples, EDA toolboxes, data sets, and color versions of all figures are available for download at http://pi-sigma.info.
Since the publication of the bestselling first edition, many advances have been made in exploratory data analysis (EDA). Covering innovative approaches for dimensionality reduction, clustering, and visualization, Exploratory Data Analysis with MATLAB, Second Edition uses numerous examples and applications to show how the methods are used in practice. New to the Second Edition: Discussions of nonnegative matrix factorization, linear discriminant analysis, curvilinear component analysis, independent component analysis, and smoothing splines - An expanded set of methods for estimating the intrinsic dimensionality of a data set - Several clustering methods, including probabilistic latent semantic analysis and spectral-based clustering - Additional visualization methods, such as a rangefinder boxplot, scatterplots with marginal histograms, biplots, and a new method called Andrews’ images -Instructions on a free MATLAB GUI toolbox for EDA... Like its predecessor, this edition continues to focus on using EDA methods, rather than theoretical aspects. The MATLAB codes for the examples, EDA toolboxes, data sets, and color versions of all figures are available for download at http://pi-sigma.info.