Articles by "Deep Learning"

Showing posts with label Deep Learning. Show all posts

Kamal I. M. Al-Malah ... 592 pages - Language: ‎English - Publisher: ‎Wiley; (October, 2023) - ISBN-10: ‎1394209088 - ISBN-13:‎ 978-1394209088.


Machine and Deep Learning Using MATLAB introduces early career professionals to the power of MATLAB to explore machine and deep learning applications by explaining the relevant MATLAB tool or app and how it is used for a given method or a collection of methods. Its properties, in terms of input and output arguments, are explained, the limitations or applicability is indicated via an accompanied text or a table, and a complete running example is shown with all needed MATLAB command prompt code. The text also presents the results, in the form of figures or tables, in parallel with the given MATLAB code, and the MATLAB written code can be later used as a template for trying to solve new cases or datasets. Throughout, the text features worked examples in each chapter for self-study with an accompanying website providing solutions and coding samples. Highlighted notes draw the attention of the user to critical points or issues.

Readers will also find information on: Numeric data acquisition and analysis in the form of applying computational algorithms to predict the numeric data patterns (clustering or unsupervised learning) + Relationships between predictors and response variable (supervised), categorically sub-divided into classification (discrete response) and regression (continuous response) + Image acquisition and analysis in the form of applying one of neural networks, and estimating net accuracy, net loss, and/or RMSE for the successive training, validation, and testing steps + Retraining and creation for image labeling, object identification, regression classification, and text recognition.

Machine and Deep Learning Using MATLAB is a useful and highly comprehensive resource on the subject for professionals, advanced students, and researchers who have some familiarity with MATLAB and are situated in engineering and scientific fields, who wish to gain mastery over the software and its numerous applications.

Anitha S. Pillai, Roberto Tedesco ... 245 pages - Language: ‎English - Publisher: ‎CRC Press; (October, 2023).

Natural Language Processing (NLP) is a sub-field of Artificial Intelligence, linguistics, and computer science and is concerned with the generation, recognition, and understanding of human languages, both written and spoken. NLP systems examine the grammatical structure of sentences as well as the specific meanings of words, and then they utilize algorithms to extract meaning and produce results. Machine Learning and Deep Learning in Natural Language Processing aims at providing a review of current Neural Network techniques in the NLP field, in particular about Conversational Agents (chatbots), Text-to-Speech, management of non-literal content – like emotions, but also satirical expressions – and applications in the healthcare field.

NLP has the potential to be a disruptive technology in various healthcare fields, but so far little attention has been devoted to that goal. This book aims at providing some examples of NLP techniques that can, for example, restore speech, detect Parkinson’s disease, or help psychotherapists. This book is intended for a wide audience. Beginners will find useful chapters providing a general introduction to NLP techniques, while experienced professionals will appreciate the chapters about advanced management of emotion, empathy, and non-literal content.

Charu C. Aggarwal ... 520 pages - Language: ‎English - Publisher: Springer; (September, 2018) - ISBN-10:‎ 3319944622 - ISBN-13:‎ 978-3319944623.

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:

The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.

The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Jon Krohn, Grant Beyleveld, Aglaé Bassens ... Publisher: ‎ Addison-Wesley Professional; (September, 2019) - Language: ‎ English - 416 pages - ISBN-10: ‎ 0135116694 - ISBN-13: ‎ 978-0135116692.

Deep learning is one of today’s hottest fields. This approach to machine learning is achieving breakthrough results in some of today’s highest profile applications, in organizations ranging from Google to Tesla, Facebook to Apple. Thousands of technical professionals and students want to start leveraging its power, but previous books on deep learning have often been non-intuitive, inaccessible, and dry. In Deep Learning Illustrated, three world-class instructors and practitioners present a uniquely visual, intuitive, and accessible high-level introduction to the techniques and applications of deep learning. Packed with vibrant, full-color illustrations, it abstracts away much of the complexity of building deep learning models, making the field more fun to learn, and accessible to a far wider audience.

Part I’s high-level overview explains what Deep Learning is, why it has become so ubiquitous, and how it relates to concepts and terminology such as Artificial Intelligence, Machine Learning, Artificial Neural Networks, and Reinforcement Learning. These opening chapters are replete with vivid illustrations, easy-to-grasp analogies, and character-focused narratives. Building on this foundation, the authors then offer a practical reference and tutorial for applying a wide spectrum of proven deep learning techniques. Essential theory is covered with as little mathematics as possible, and illuminated with hands-on Python code. Theory is supported with practical “run-throughs” available in accompanying Jupyter notebooks, delivering a pragmatic understanding of all major deep learning approaches and their applications: machine vision, natural language processing, image generation, and videogaming. To help readers accomplish more in less time, the authors feature several of today’s most widely-used and innovative deep learning libraries, including TensorFlow and its high-level API, Keras; PyTorch, and the recently-released high-level Coach, a TensorFlow API that abstracts away the complexity typically associated with building Deep Reinforcement Learning algorithms.

Abhishek Kumar Pandey, Pramod Singh Rathore, S. Balamurugan ... 282 pages - AmazonSIN: B07WFZZ2TB ... Publisher: BPB Publications; (June, 2019) - Language: English.


Machine learning is mostly sought in the research field and has become an integral part of many research projects nowadays including commercial applications, as well as academic research. Application of machine learning ranges from finding friends on social networking sites to medical diagnosis and even satellite processing. In this book, we have made an honest effort to make the concepts of machine learning easy and give basic programs in MATLAB right from the installation part. Although the real-time application of machine learning is endless, however, the basic concepts and algorithms are discussed using MATLAB language so that not only graduation students but also researchers are benefitted from it. 

What will you learn: ● Pre-requisites to machine learning ● Finding natural patterns in data ● Building classification methods ● Data pre-processing in Python ● Building regression models ● Creating neural networks ● Deep learning

David Foster ... 330 pages - ISBN-10: 1492041947 - ISBN-13: 978-1492041948 ... Publisher : O'Reilly Media; (July, 2019) - Language: English.

Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models, and world models.

Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos + Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation + Create recurrent generative models for text generation and learn how to improve the models using attention + Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting + Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN.

Laura Graesser, Wah Loon Keng ... 416 pages - ISBN-13: 978-0135172384 - ISBN-10: 0135172381 ... Publisher: Addison-Wesley Professional; (December, 2019) - Language: English.


The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice: Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games–such as Go, Atari games, and DotA 2–to robotics.

Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python: Understand each key aspect of a deep RL problem + Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) + Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) + Understand how algorithms can be parallelized synchronously and asynchronously + Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work + Explore algorithm benchmark results with tuned hyperparameters + Understand how deep RL environments are designed.

John D. Kelleher ... 296 pages - Publisher: The MIT Press (September, 2019) ... Language: English - ISBN-10: 0262537559 - ISBN-13: 978-0262537551.

An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution.

Umberto Michelucci ... 431 pages - Publisher: Apress; (September, 2018) ... Language: English - AmazonSIN: B07H6D9NQ8.
Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy).

What You Will Learn: Implement advanced techniques in the right way in Python and TensorFlow + Debug and optimize advanced methods (such as dropout and regularization) + Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) + Set up a machine learning project focused on deep learning on a complex dataset. Who This Book Is For: Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.

Nilanjan Dey, Sanjeev Wagh, Parikshit N. Mahalle, Mohd. Shafi Pathan ... 243 pages - Publisher: CRC Press; (May, 2019) ... Language: English - AmazonSIN: B07S4BVPSL.

The book focuses on how machine learning and the Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Ontologies that are used in heterogeneous IoT environments have been discussed including interpretation, context awareness, analyzing various data sources, machine learning algorithms and intelligent services and applications. Further, it includes unsupervised and semi-supervised machine learning techniques with study of semantic analysis and thorough analysis of reviews. Divided into sections such as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results.

Key Features: Follows an algorithmic approach for data analysis in machine learning + Introduces machine learning methods in applications + Address the emerging issues in computing such as deep learning, machine learning, Internet of Things and data analytics + Focuses on machine learning techniques namely unsupervised and semi-supervised for unseen and seen data sets + Case studies are covered relating to human health, transportation and Internet applications

Michael Paluszek, Stephanie Thomas ... 252 pages - Publisher: Apress; (February, 2020) ... Language: English - ISBN-10: 1484251237 - ISBN-13: 978-1484251232.

Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. You’ll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'll learn to model complex systems, including the stock market, natural language, and angles-only orbit determination. You’ll cover dynamics and control, and integrate deep-learning algorithms and approaches using MATLAB. You'll also apply deep learning to aircraft navigation using images.

Finally, you'll carry out classification of ballet pirouettes using an inertial measurement unit to experiment with MATLAB's hardware capabilities. What You Will Learn: Explore deep learning using MATLAB and compare it to algorithms + Write a deep learning function in MATLAB and train it with examples + Use MATLAB toolboxes related to deep learning + Implement tokamak disruption prediction.

Valentina Emilia Balas, Sanjiban Sekhar Roy, Dharmendra Sharma, Pijush Samui ... 389 pages - Publisher: Springer; (March, 2019) ... Language: English - ISBN-10: 3030114783 - ISBN-13: 978-303011478.

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.

Ethem Alpaydin ... 640 pages - Publisher: Phi; 3rd edition (2015) ... Language: English - ISBN-10: 8120350782 - ISBN-13: 978-8120350786.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.

Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Introduction to Machine Learning can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.

Seth Weidman ... 253 pages - Publisher: O'Reilly Media; (September, 2019) ... Language: English - AmazonSIN: B07XL53Y4C.

With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You’ll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way. Author Seth Weidman shows you how neural networks work using a first principles approach. You’ll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you’ll be set up for success on all future deep learning projects.

This book provides: Extremely clear and thorough mental models—accompanied by working code examples and mathematical explanations—for understanding neural networks + Methods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented framework + Working implementations and clear-cut explanations of convolutional and recurrent neural networks + Implementation of these neural network concepts using the popular PyTorch framework.

Richard S. Sutton, Andrew G. Barto ... 532 pages - Publisher: A Bradford Book; 2nd edition (October, 2018) ... Language: English - AmazonSIN: B07JN1QFW5.

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Terrence J. Sejnowski ... 354 pages - Publisher: MIT Press; (2018) ... Language: English - ISBN-10: 9780262038034 - ISBN-13: 978-0262038034.

How deep learning -from Google Translate to driverless cars to personal cognitive assistants- is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.

Shai Shalev-Shwartz, Shai Ben-David ... 415 pages - Publisher: Cambridge Univ. Press; (May, 2014) ... Language: English - AmazonSIN: B00J8LQU8I.

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.

Jeff Heaton ... 375 pages - Publisher: Heaton Research, Inc.; (November, 2015) ... Language: English - AmazonSIN: B0184WRDEQ.

Neural networks have been a mainstay of artificial intelligence since its earliest days. Now, exciting new technologies such as deep learning and convolution are taking neural networks in bold new directions. In this book, we will demonstrate the neural networks in a variety of real-world tasks such as image recognition and data science. We examine current neural network technologies, including ReLU activation, stochastic gradient descent, cross-entropy, regularization, dropout, and visualization.

Yen-Wei Chen, Lakhmi C. Jain ... 218 pages - Publisher: Springer; (November, 2019) ... Language: English - ASIN: B081R8DDN6 by Amazon.

This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems. Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data.

Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.

Yinyan Zhang, Shuai Li, Xuefeng Zhou ... 225 pages - Publisher: Springer; (November, 2019) ... Language: English - ISBN-10: 3030333833 - ISBN-13: 978-3030333836.

This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances. It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution. Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Contact Form

Name

Email *

Message *

Powered by Blogger.