Articles by "Regression Analysis"

Showing posts with label Regression Analysis. Show all posts

John Fox, Sanford Weisberg ... 608 pages - Publisher: SAGE Publications; 3rd edition (October, 2018) ... Language: English - ISBN-10: 1544336470 - ISBN-13: 978-1544336473 ...

An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the carand effects packages for R for this new edition, and include coverage of RStudio and R Markdown.

Jacek Welc, Pedro J. R. Esquerdo ... 286 pages - Publisher: Springer; (December, 2017) ... Language: English - ASIN: B078Q1RQDV by Amazon...

This book offers hands-on statistical tools for business professionals by focusing on the practical application of a single-equation regression. The authors discuss commonly applied econometric procedures, which are useful in building regression models for economic forecasting and supporting business decisions. A significant part of the book is devoted to traps and pitfalls in implementing regression analysis in real-world scenarios. The book consists of nine chapters, the final two of which are fully devoted to case studies. Today's business environment is characterised by a huge amount of economic data. Making successful business decisions under such data-abundant conditions requires objective analytical tools, which can help to identify and quantify multiple relationships between dozens of economic variables. Single-equation regression analysis, which is discussed in this book, is one such tool. The book offers a valuable guide and is relevant in various areas of economic and business analysis, including marketing, financial and operational management.

Rob J. Hyndman, George Athanasopoulos ... 382 pages - Publisher: OTexts; 2nd edition (May, 2018) ... Language: English - ISBN-10: 0987507117 - ISBN-13: 978-0987507112 ...

Forecasting is required in many situations. Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience. In this second edition, all chapters have been updated to cover the latest research and forecasting methods. Three new chapters have been added on dynamic regression forecasting, hierarchical forecasting and practical forecasting issues.

Xiaofeng Wang, Yu Ryan Yue, Julian J. Faraway ... 324 pages - Publisher: Chapman and Hall/CRC; Language: English - ISBN-10: 1498727255 - ISBN-13: 978-1498727259 ...

INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC), the standard tool for Bayesian inference. Bayesian Regression Modeling with INLA covers a wide range of modern regression models and focuses on the INLA technique for building Bayesian models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to demonstrate the interplay of theory and practice with reproducible studies. Complete R commands are provided for each example, and a supporting website holds all of the data described in the book. An R package including the data and additional functions in the book is available to download. The book is aimed at readers who have a basic knowledge of statistical theory and Bayesian methodology. It gets readers up to date on the latest in Bayesian inference using INLA and prepares them for sophisticated, real-world work.

Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining ... 672 pages - Publisher: Wiley; 5th edition (April, 2012) ... Language: English - ISBN-10: 9780470542811 - ISBN-13: 978-0470542811 ... 

A comprehensive and up-to-date introduction to the fundamentals of regression analysis: Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling,including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics,including: * A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models. * Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model. * Tests on individual regression coefficients and subsets of coefficients. * Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition.Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.

Luca Massaron ... 312 pages - Publisher: Packt Publishing; (February, 2016) ... Language: English - ISBN-10: 1785286315 - ISBN-13: 978-1785286315 ...

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.

Andrew Gelman, Jennifer Hill ... 648 pages - Publisher: Cambridge Univ. Press; (December, 2006) ... Language: English - ISBN-10: 052168689X - ISBN-13: 978-0521686891 ...

Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.

Stata Software for Statistics and Data Science v15 [Size: 295.5 MB] ... Stata is a general-purpose statistical software package created in 1985 by StataCorp. Most of its users work in research, especially in the fields of economics, sociology, political science, biomedicine and epidemiology.[citation needed]Stata's capabilities include data management, statistical analysis, graphics, simulations, regression analysis (linear and multiple), and custom programming. The name Stata is a portmanteau of the words statistics and data. The correct English pronunciation of Stata "must remain a mystery"; any of "Stay-ta", "Sta-ta" or "Stah-ta" are considered acceptable.

Features: Linear models: regression • censored outcomes • endogenous regressors • bootstrap, jackknife, and robust and cluster–robust variance • instrumental variables • three-stage least squares • constraints • quantile regression • GLS • more. Panel/longitudinal data: random and fixed effects with robust standard errors • linear mixed models • random-effects probit • GEE • random- and fixed-effects Poisson • dynamic panel-data models • instrumental variables • panel unit-root tests • more. Multilevel mixed-effects models: continuous, binary, count, and survival outcomes • two-, three-, and higher-level models • generalized linear models • nonlinear models • random intercepts • random slopes • crossed random effects • BLUPs of effects and fitted values • hierarchical models • residual error structures • DDF adjustments • support for survey data • more. Binary, count, and limited outcomes: logistic, probit, tobit • Poisson and negative binomial • conditional, multinomial, nested, ordered, rank-ordered, and stereotype logistic • multinomial probit • zero-inflated and left-truncated count models • selection models • marginal effects • more. Extended regression models (ERMs): combine endogenous covariates, sample selection, and nonrandom treatment in models for continuous, interval-censored, binary, and ordinal outcomes • more.

Johan A. K. Suykens, Marco Signoretto ... 525 pages - Publisher: Chapman and Hall/CRC; (October, 2014) ... Language: English - ISBN-10: 1482241390 - ISBN-13: 978-1482241396 ...

Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso * Discusses multi-layer SVMs * Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing * Describes graph-based regularization methods for single- and multi-task learning * Considers regularized methods for dictionary learning and portfolio selection * Addresses non-negative matrix factorization * Examines low-rank matrix and tensor-based models * Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing * Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent. Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

Jian Qing Shi, Taeryon Choi ... 216 pages - Publisher: CRC; (July, 2011) .. Language: English - ISBN-10: 1439837732 - ISBN-13: 978-1439837733 ...

Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables. Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dimensional data and variable selection. The remainder of the text explores advanced topics of functional regression analysis, including novel nonparametric statistical methods for curve prediction, curve clustering, functional ANOVA, and functional regression analysis of batch data, repeated curves, and non-Gaussian data. Many flexible models based on Gaussian processes provide efficient ways of model learning, interpreting model structure, and carrying out inference, particularly when dealing with large dimensional functional data. This book shows how to use these Gaussian process regression models in the analysis of functional data. Some MATLAB® and C codes are available on the first author’s website.

Samprit Chatterjee, Ali S. Hadi ... 424 pages - Publisher: Wiley; 5th edition (September, 2012) ... Language: English - ISBN-10: 0470905840 - ISBN-13: 978-0470905845...

Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however,requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics,transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression * Fitting nonlinear models * Errors in variables * ANOVA for designed experiments. Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique.Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R.

George A. F. Seber, C. J. Wild ... 768 pages - Publisher: Wiley-Interscience; (September, 2003) ... Language: English - ISBN-10: 0471471356 - ISBN-13: 978-0471471356 ...

Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references. Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher.

Richard F. Gunst, Robert L. Mason ... 424 pages - Publisher: CRC Press; 1st edition (July, 1980) ... Language: English - ISBN-10: 0824769937 - ISBN-13: 978-0824769932 ...

Regression Analysis and Its Application: A Data-Oriented Approach answers the need for researchers and students who would like a better understanding of classical regression analysis. Useful either as a textbook or as a reference source, this book bridges the gap between the purely theoretical coverage of regression analysis and its practical application. The book presents regression analysis in the general context of data analysis. Using a teach-by-example format, it contains ten major data sets along with several smaller ones to illustrate the common characteristics of regression data and properties of statistics that are employed in regression analysis. The book covers model misspecification, residual analysis, multicollinearity, and biased regression estimators. It also focuses on data collection, model assumptions, and the interpretation of parameter estimates. Complete with an extensive bibliography, Regression Analysis and Its Application is suitable for statisticians, graduate and upper-level undergraduate students, and research scientists in biometry, business, ecology, economics, education, engineering, mathematics, physical sciences, psychology, and sociology. In addition, data collection agencies in the government and private sector will benefit from the book.

Giuseppe Ciaburro ... 422 pages - Publisher: Packt Publishing; (January, 2018) ... Language: English - ISBN-10: 178862730X - ISBN-13: 978-1788627306.

Regression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables. This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are - supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process - loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples. By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects.

Hossein Riazoshams, Habshah Midi, Gebrenegus Ghilagaber ... 264 pages - Publisher: Wiley; 1st edition (June, 2018) ... Language: English - ASIN: B07DP92FBT by Amazon ...

The first book to discuss robust aspects of nonlinear regression—with applications using R software: Robust Nonlinear Regression: with Applications using R covers a variety of theories and applications of nonlinear robust regression. It discusses both parts of the classic and robust aspects of nonlinear regression and focuses on outlier effects. It develops new methods in robust nonlinear regression and implements a set of objects and functions in S-language under SPLUS and R software. The software covers a wide range of robust nonlinear fitting and inferences, and is designed to provide facilities for computer users to define their own nonlinear models as an object, and fit models using classic and robust methods as well as detect outliers. The implemented objects and functions can be applied by practitioners as well as researchers. The book offers comprehensive coverage of the subject in 9 chapters: Theories of Nonlinear Regression and Inference; Introduction to R; Optimization; Theories of Robust Nonlinear Methods; Robust and Classical Nonlinear Regression with Autocorrelated and Heteroscedastic errors; Outlier Detection; R Packages in Nonlinear Regression; A New R Package in Robust Nonlinear Regression; and Object Sets. The first comprehensive coverage of this field covers a variety of both theoretical and applied topics surrounding robust nonlinear regression
Addresses some commonly mishandled aspects of modeling. R packages for both classical and robust nonlinear regression are presented in detail in the book and on an accompanying websiteRobust Nonlinear Regression: with Applications using R is an ideal text for statisticians, biostatisticians, and statistical consultants, as well as advanced level students of statistics.

Conrad Carlberg ... 368 pages - Publisher: Que Publishing; 1st edition (May, 2016) ... Language: English - ISBN-10: 0789756552 - ISBN-13: 978-0789756558 ...

This is today’s most complete guide to regression analysis with Microsoft® Excel for any business analytics or research task. Drawing on 25 years of advanced statistical experience, Microsoft MVP Conrad Carlberg shows how to use Excel’s regression-related worksheet functions to perform a wide spectrum of practical analyses. Carlberg clearly explains all the theory you’ll need to avoid mistakes, understand what your regressions are really doing, and evaluate analyses performed by others. From simple correlations and t-tests through multiple analysis of covariance, Carlberg offers hands-on, step-by-step walkthroughs using meaningful examples. He discusses the consequences of using each option and argument, points out idiosyncrasies and controversies associated with Excel’s regression functions, and shows how to use them reliably in fields ranging from medical research to financial analysis to operations.

You don’t need expensive software or a doctorate in statistics to work with regression analyses. Microsoft Excel has all the tools you need—and this book has all the knowledge! Understand what regression analysis can and can’t do, and why + Master regression-based functions built into all recent versions of Excel + Work with correlation and simple regression + Make the most of Excel’s improved LINEST() function + Plan and perform multiple regression + Distinguish the assumptions that matter from the ones that don’t + Extend your analysis options by using regression instead of traditional analysis of variance + Add covariates to your analysis to reduce bias and increase statistical power.

Xin Yan, Xiao Gang Su ... 328 pages - Publisher: World Scientific; 1st edition (June, 2009) ... Language: English - ISBN-10: 9812834109 - ISBN-13: 978-9812834102 ...

This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields.

Contact Form

Name

Email *

Message *

Powered by Blogger.